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Abstract

This technical report describes the training
of nomic-embed-text-v1, the first fully re-
producible, open-source, open-weights, open-
data, 8192 context length English text em-
bedding model that outperforms both OpenAI
Ada-002 and OpenAI text-embedding-3-small
on short and long-context tasks. We release
the training code and model weights under
an Apache 2 license. In contrast with other
open-source models, we release a training data
loader with 235 million curated text pairs that
allows for the full replication of nomic-embed-
text-v1. You can find code and data to repli-
cate the model at https://github.com/nomic-
ai/contrastors.

1 Introduction

Text embeddings are an integral component of
modern NLP applications powering retrieval-
augmented-generation (RAG) for LLMs and se-
mantic search (Lewis et al., 2021a; Izacard et al.,
2022b; Ram et al., 2023). These embeddings en-
code semantic information about sentences or doc-
uments as low-dimensional vectors that are used
in downstream applications, such as clustering for
data visualization, classification, and information
retrieval.

The majority of the top open-source models
on the MTEB benchmark (Muennighoff et al.,
2023) are limited to context lengths of 512, such
as E5 Wang et al. (2022), GTE Li et al. (2023),
and BGE Xiao et al. (2023). This short context
length reduces model utility in domains where
overall document semantics are not localized to
sentences or paragraphs. Most top embedding
models with a context length longer than 2048
are closed-source, such as Voyage-lite-01-instruct
Voyage (2023) and text-embedding-ada-002 Nee-
lakantan et al. (2022).

The top two performing open-source long con-
text embedding models are jina-embedding-v2-
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Figure 1: Text Embedding Model Benchmarks. Ag-
gregate performance of nomic-embed-text-v1, OpenAI
text-embedding-ada, OpenAI text-embedding-3-small
and jina-embedding-base-v2 on short and long con-
text benchmarks. Nomic Embed is the only fully au-
ditable long-context model that exceeds OpenAI text-
embedding-ada, OpenAI text-embedding-3-small, and
Jina performance across both short and long context
benchmarks. X-axis units vary per benchmark suite.

base-en Günther et al. (2024) and E5-Mistral-7b-
instruct Wang et al. (2023b).

Unfortunately, jina-embedding-v2-base does
not surpass OpenAI’s text-embedding-ada-002
Neelakantan et al. (2022) (see Table 1). Further,
E5-Mistral Wang et al. (2023b) is not feasible to
use in many engineering applications due to the
large inference requirements of a 7B parameter
transformer, and is not recommended for use be-
yond 4096 tokens.

This report describes how we trained nomic-
embed-text-v1, a 137M parameter, open-source,
open-weights, open-data, 8192 sequence length
model that surpasses OpenAI text-embedding-ada
and text-embedding-3-small performance on both
short and long context benchmarks (Table 1). We
release the model weights and codebase under an
Apache-2 license. We additionally release our
curated training dataset to enable end-to-end au-
ditability and replication of the model.

https://github.com/nomic-ai/contrastors
https://github.com/nomic-ai/contrastors


Model Params Seq MTEB LoCo Jina LC Weights Code Data

nomic-embed-text-v1 137M 8192 62.39 85.53 54.16 Yes Yes Yes
nomic-embed-text-v1-ablated 137M 8192 61.36 86.89 53.53 Yes Yes Yes
jina-embeddings-base-v2-en 137M 8192 60.39 85.45 51.90 Yes No No
text-embedding-ada-002 N/A 8192 60.99 52.70 55.25 No No No
text-embedding-3-small N/A 8192 62.26 82.4 58.21 No No No

E5-Mistral-7b-instruct 7B 4096 66.6 87.8 N/A Yes No No
text-embedding-3-large N/A 8192 64.59 79.4 58.69 No No No

Table 1: Benchmarking nomic-embed-text-v1 against OpenAI models and other top long context open-source
models. Nomic-embed-text-v1 is the only 100M parameter class open-source model that outperforms OpenAI
text-embedding-ada and text-embedding-3-small on both short and long-context tasks. Nomic-embed-text-v1-
ablated refers to the training setup described in Section 5.4, which omits the HotpotQA and FEVER data. ‘Seq’
refers to the context length of the model, and Jina LC is an average over tasks in the Jina Long Context benchmark.

2 Related Work

State-of-the-art text embedding models are trained
by initializing a pre-trained transformer and then
fine-tuning with a contrastive loss objective. Tra-
ditionally, fine-tuning involved leveraging labeled
datasets such as MSMarco and SNLI (Bowman
et al., 2015) to generate paired training data for
the contrastive signal. Examples include SBERT
(Reimers and Gurevych, 2019), SimCSE (Gao
et al., 2022), and SGPT (Muennighoff, 2022). Re-
cent systems such as E5 (Wang et al., 2022), GTE
(Li et al., 2023), BGE (Xiao et al., 2023), Instruc-
tOR (Su et al., 2023a), and Jina (Günther et al.,
2023, 2024) utilize a multi-stage regime in which
a pretrained transformer is first contrastively fine-
tuned using a large corpus of weakly paired data
(e.g. Quora, Reddit Comments) and then addi-
tionally fine-tuned on small, higher quality la-
beled datasets such as MSMarco. The two-stage
paradigm significantly improves model quality as
weakly paired data is available in much greater
quantity.

Evaluating text embedding models is challeng-
ing. The BEIR benchmark Thakur et al. (2021)
evaluates dense retrievers on 15 zero-shot retrieval
datasets. Early transformer-based text embedding
models such as SBERT (Reimers and Gurevych,
2019) were only evaluated on semantic textual
similarity (STS) datasets. More recently, MTEB
Muennighoff et al. (2023) has become the de facto
benchmark for quantitatively evaluating embed-
ding models across many tasks, but has limited
evaluations over long context lengths (>512 to-
kens). Jina Günther et al. (2024) developed a
benchmark of four datasets specialized for long

context evaluation. Additionally, the LoCo Saad-
Falcon et al. (2024) benchmark was recently re-
leased to evaluate the performance of long context
retrieval models.

As AI applications mature, auditability and
compliance of models and their training data will
be a critical component of safe model deployments
in high-impact domains. For example, recent work
by Anthropic on sleeper agents (Hubinger et al.,
2024) demonstrates the risk of deploying models
without end-to-end auditability. Top-performing
text embedding models currently do not have au-
ditable training stacks (i.e. a fully reproducible
training pipeline with available weights, data, and
code).

3 Training Data

In this section, we describe our data mix across
each training stage. You can access the train-
ing data of nomic-embed-text-v1 by visiting the
nomic-ai/contrastors code repository. You can
explore a 5M sample of our contrastive train-
ing pairs at https://atlas.nomic.ai/map/nomic-text-
embed-v1-5m-sample.

3.1 Masked Language Modeling Pretraining

Following (Devlin et al., 2019), we use BooksCor-
pus (Zhu et al., 2015) and a Wikipedia dump from
2023 to train a long-context BERT model, here-
inafter called nomic-bert-2048. Each document
from BooksCorpus and Wikipedia is tokenized us-
ing the bert-base-uncased tokenizer from Devlin
et al. (2019) and packed to chunks of 2048 tokens.
If a document is shorter than 2048 tokens, we ap-
pend another document until it fits 2048 tokens. If

https://github.com/nomic-ai/contrastors
https://atlas.nomic.ai/map/nomic-text-embed-v1-5m-sample
https://atlas.nomic.ai/map/nomic-text-embed-v1-5m-sample


a document is greater than 2048 tokens, we split it
across multiple documents.

3.2 Unsupervised Contrastive Pretraining
Similar to Wang et al. (2022); Li et al. (2023);
Xiao et al. (2023); Ni et al. (2022), we use large
collections of publicly available data to form pairs.
These datasets span various objectives and do-
mains, from web retrieval to clustering of scien-
tific articles. In total, we curated 470 million pairs
across 29 datasets1.

However, since these datasets can contain
noisy examples, we employ consistency filtering
(Günther et al., 2023; Wang et al., 2022).

Instead of using all-MiniLM-L6-v2 model2, we
use the gte-base model3. For each pair, described
as (query, document), we embed both the queries
and documents of a 1 million point sub-sample of
the dataset. For each query, we find the top-k (in
this case 2) neighbors using cosine similarity. If
document is not in the top-k neighbors, we dis-
card the example. After filtering, we end up with
∼235M pairs. The full dataset distribution can be
seen in Table 5.

As the majority of these datasets are composed
of sequences shorter than 2048 tokens we addi-
tionally curate long context datasets to allow for
the learning of long-range dependencies. Namely,
we use full Wikipedia articles paired with their ti-
tles as well as abstracts and full paper bodies from
a single paper from S2ORC (Lo et al., 2020).

During training, we sample pairs from one data
source at a time and fill the entire batch with
samples from that single source to discourage the
model from learning source-specific shortcuts.

3.3 Supervised Contrastive Fine-tuning
Supervised fine tuning is performed on MSMarco
(Bajaj et al., 2018; Wang et al., 2023a), NQ
(Karpukhin et al., 2020; Gao and Callan, 2021),
NLI (Gao et al., 2022), HotpotQA (Yang et al.,
2018), FEVER (Thorne et al., 2018), portions of
MEDI (Su et al., 2023a), WikiAnswers (Fader
et al., 2014), and Reddit4. For the datasets MS-
Marco, NQ, NLI, FEVER, and HotpotQA, we

1https://huggingface.co/
datasets/sentence-transformers/
embedding-training-data

2all-MiniLM-L6-v2 model https://huggingface.co/
thenlper/gte-base)

3gte-base model (https://huggingface.co/thenlper/
gte-base)

4https://github.com/PolyAI-LDN/conversational-
datasets/tree/master/reddit

train over the released training sets from the BEIR
benchmark (Thakur et al., 2021). For the retrieval
datasets (MSMarco, NQ, HotpotQA, and Fever),
we mine negatives, if not already mined using gte-
baseLi et al. (2023). For every (q, d) pair, we get
the top-k similar documents as hard negatives. For
all other datasets, we randomly sample negatives
in place of hard negatives as we found that mining
negatives did not improve performance.

Similar to the unsupervised contrastive stage,
we sample a dataset and fill a batch with all points
from that chosen dataset.

4 Experimental Setup

4.1 Model Architecture

One of the main drawbacks of existing text en-
coders is their limited sequence length, which is
predominately capped at 512 tokens. To train a
long sequence length model, we first begin by
adapting BERT so it can accommodate a long se-
quence length. In this work, we target an 8192
sequence length. To do so, we apply the following
architecture changes and optimizations to BERT
base (Devlin et al., 2019):

• Substituting absolute positional embeddings
for rotary positional embeddings (Su et al.,
2023b)

• Using SwiGLU activation instead of GeLU
(Shazeer, 2020)

• Using Flash Attention (Dao et al., 2022)

• Setting Dropout to 0 (Geiping and Goldstein,
2022)

• Vocab size as a multiple of 64 (Portes et al.,
2023) (Shoeybi et al., 2020)

resulting in a 137M parameter encoder.
We train all stages with a max sequence length

of 2048 and employ Dynamic NTK interpola-
tion at inference to scale to 8192 sequence length
(Peng et al., 2023; emozilla, 2023). Addition-
ally, we opt for SwiGLU versus GeGLU like pro-
posed in (Portes et al., 2023) as runtime is roughly
25% faster for SwiGLU using the Flash Attention
repository5.

5https://github.com/Dao-AILab/
flash-attention/tree/main

https://huggingface.co/datasets/sentence-transformers/embedding-training-data
https://huggingface.co/datasets/sentence-transformers/embedding-training-data
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https://github.com/Dao-AILab/flash-attention/tree/main
https://github.com/Dao-AILab/flash-attention/tree/main


Model Bsz Steps Seq Cola SST2 MRPCSTSB QQP MNLI QNLI RTE Avg

nomic-bert-2048 4k 100k 2k 0.50 0.93 0.88 0.90 0.92 0.86 0.92 0.82 0.84
MosaicBERT 4k 70k 2k 0.54 0.93 0.87 0.90 0.92 0.86 0.92 0.82 0.85
RobertaBase 8k 500k 512 0.64 0.95 0.90 0.91 0.92 0.88 0.93 0.79 0.86
JinaBERTBase 4k 100k 512 0.51 0.95 0.88 0.90 0.81 0.86 0.92 0.79 0.83
MosaicBERT 4k 178k 128 0.59 0.94 0.89 0.90 0.92 0.86 0.91 0.83 0.85

Table 2: GLUE Dev Set Results. Roberta numbers taken from Table 8 in (Liu et al., 2019). MosaicBert numbers
taken from Table S1 in Portes et al. (2023) except for the 2048 model which we evaluated in the same manner as
nomic-bert-2048. JinaBertBase Glue Test numbers reported in Table 2 from (Günther et al., 2024).

4.2 Masked Language Modeling
During training, we use a 30% masking rate in-
stead of 15% following (Portes et al., 2023) and
we remove the Next Sentence Prediction task (Liu
et al., 2019). We use the AdamW optimizer
(Loshchilov and Hutter, 2019) with a learning rate
of 5e-4 with β1 = 0.9 β2 = 0.98. We employ a lin-
ear warmup of 6% of the total training steps and
a linear decay to 0. We use a global batch size of
4096 with gradient accumulation over 8 batches.
We utilize DeepSpeed (Rajbhandari et al., 2020)
stage 2 to fit bigger batches into memory. Ad-
ditionally, we use bfloat16 precision for matrix
multiplication and fp32 for gradient accumulation
dtype. We disable gradient clipping (Liu et al.,
2019) and set weight decay to 1e-5. We tried train-
ing with a learning rate of 1e-3, but found insta-
bilities during training. We call our final model
nomic-bert-2048 and also release its weights.

4.3 Unsupervised Contrastive Pretraining
Unsupervised contrastive pretraining aims to teach
a model to distinguish the most similar doc-
uments from other irrelevant documents. To
do so, we employ the InfoNCE contrastive loss
(van den Oord et al., 2019). For a given batch
B = (q0, d0), (q1, d1), ..., (qn, dn), we minimize
the loss function:

LC = − 1

n

∑
i

log
es(qi,di)/τ

es(qi,di)/τ +
∑n

j ̸=i e
s(qi,dj)/τ

where s(q, d) is the cosine similarity of (q, d)
We initialize the model for unsupervised con-

trastive training with the weights of nomic-bert-
2048. We use a batch size of 16,384 so each batch
has a large number of in-batch negatives. Our op-
timizations for the encoder architecture and train-
ing strategy centered around achieving this batch
size. We use AdamW with a learning rate of 2e-
5, β1 = 0.9, β2 = 0.999, and weight decay of

0.01. Gradient clipping is set to 1.0. We use an
linear warmup schedule of 700 steps and an in-
verse square root decay schedule. We train with a
max sequence length of 2048 for 1 full epoch over
the data.

Due to GPU memory constraints, we could
not fit the full model, optimizer, states, and data
into memory. As a workaround, we employ
GradCache (Luyu Gao and Callan, 2021) as well
as mixed precision training (Micikevicius et al.,
2018).

Finally, we use task specific prefixes to break
the symmetry of the biencoder as in (Wang et al.,
2022). Without prefixes, the model receives con-
flicting reward signal. Consider the case of deter-
mining which response is closest to the question
”What is the capital of France?”:

1. “What is the name of the capital city of
France?

2. “Paris is the capital of France.”

A semantic similarity task would consider the
first closest, while a question answering task
would consider the second closest. Prefixes en-
able the model to distinguish between the behav-
iors specified by each of these tasks.

We use the following task-specific prefixes:

• search query

• search document

• classification

• clustering

inspired by Reimers et al. (2023). We first break
prefixes into two categories: symmetric, where the
query and document have a similar structure, and
asymmetric, where the query is usually a single
sentence and the document can be many sentences.



(Su et al., 2023a) The first two prefixes are used
for retrieval tasks: where search query is typi-
cally for the question and search document is
for the response. classification is used for
STS-related tasks like rephrasals. clustering
is used for tasks where to objective is to group se-
mantically similar texts close together, like Arxiv
title-abstract pairs. For symmetric tasks, the same
prefix is appended to both the query and docu-
ment.

4.4 Supervised Contrastive Fine-tuning

The last stage of training aims to boost perfor-
mance by utilizing human-labeled datasets. Sev-
eral papers including (Ni et al., 2021a,b; Wang
et al., 2022; Li et al., 2023) have shown that fine-
tuning on these datasets leads to improvements in
downstream performance.

We adapt the paired contrastive loss to include
hard negatives in each batch. We train for one
epoch using seven hard negatives per pair and a
batch size of 256. We employ a learning rate of
2e-5, β1 = 0.9, β2 = 0.999, and weight decay
of 0.01. Gradient clipping is set to 1.0. We use
a linear warmup schedule of 400 steps and a lin-
ear cooldown to 0 and train with prefixes as de-
scribed above. We found that increasing the num-
ber of negatives above 7 to not meaningfully im-
prove performance. We also found that training
for multiple epochs hurts performance.

5 Results

We evaluate nomic-bert-2048 on the GLUE
benchmark (Wang et al., 2019) and find that it
is competitive with similarly sized and trained
models. We evaluate nomic-embed-text-v1 on
MTEB (Muennighoff et al., 2023), Jina’s Long
Context Benchmark (Günther et al., 2024), and
LoCo (Saad-Falcon et al., 2024). nomic-embed-
text-v1 exceeds text-embedding-ada-002 and jina-
embeddings-v2-base-en. On the long con-
text benchmarks, LoCo and Jina Long Context
Benchmark, nomic-embed-text-v1 uniformly out-
performs jina-embeddings-v2-base-en. nomic-
embed-text-v1 outperforms text-embedding-ada-
002 on LoCo and on two of four datasets in Jina’s
Long Context Benchmark.

5.1 nomic-bert-2048 GLUE Results

We evaluate nomic-bert-2048 on the GLUE
benchmark (Wang et al., 2019) following the

methodolgy presented in (Liu et al., 2019). The
GLUE benchmark consists of 9 tasks, but we eval-
uate on 8 similar to (Liu et al., 2019).

For each task, we train for 10 epochs with batch
sizes 16, 32 and learning rate 1e-5, 2e-5, 3e-5 with
a linear warmup of 6% across 5 seeds. The me-
dian score per task at the end of the 10 epochs is
presented in Table 2. Note we report accuracy for
MRPC and QQP and Pearson for STSB 6. We re-
port our results in Table 2. Similar to (Liu et al.,
2019), we initialize from an MNLI checkpoint for
RTE, STSB, and MRPC.

MosaicBERT (Portes et al., 2023) performs
slightly better but is trained for slightly longer
and on C4 (Raffel et al., 2019). Across all tasks,
nomic-bert-2048 scores similarly to MosaicBERT
except on Cola. However, we used a longer se-
quence length model and in effect have seen more
tokens during pretraining. JinaBERT also scores
similarly, although they report test scores ver-
sus dev scores and is trained similarly to Mo-
saicBERT.

5.2 MTEB Results
MTEB (Muennighoff et al., 2023) has become
the standard benchmark for evaluating embed-
ding models due to its diverse coverage of 8
tasks spanning 56 datasets. MTEB evaluated em-
bedding models across Classification, Clustering,
Pair Classification, Reranking, Retrieval, Seman-
tic Textual Similarity, and Summarization. The
MTEB score is a weighted average of the per-task
scores.

5.3 Long Context Results
However, as noted in (Günther et al., 2024),
MTEB has very few datasets that include long se-
quences. To evaluate nomic-embed-text-v1’s per-
formance on longer sequences, we consider two
additional benchmarks: (Günther et al., 2024)
Long Context Dataset as well as the LoCo bench-
mark from (Saad-Falcon et al., 2024).

5.3.1 JinaAI Long Context Benchmark
The Jina Long Context Benchmark (Günther et al.,
2024) evaluates on 4 datasets across Retrieval and
Clustering; namely, NarrativeQA (Günther et al.,
2024), WikiCites 7, SciFact (Wadden et al., 2020),

6https://github.com/
facebookresearch/fairseq/issues/1561#
issuecomment-571729519

7https://huggingface.co/datasets/
jinaai/cities_wiki_clustering

https://github.com/facebookresearch/fairseq/issues/1561#issuecomment-571729519
https://github.com/facebookresearch/fairseq/issues/1561#issuecomment-571729519
https://github.com/facebookresearch/fairseq/issues/1561#issuecomment-571729519
https://huggingface.co/datasets/jinaai/cities_wiki_clustering
https://huggingface.co/datasets/jinaai/cities_wiki_clustering


Table 3: Results on the MTEB benchmark (Muennighoff et al., 2023). The numbers are averaged for each category.
Please refer to https://huggingface.co/spaces/mteb/leaderboard for the scores per dataset and
the most up to date results.

Category → Cls. Clust. PairCls. Rerank Retr. STS Summ. Avg
Number of datasets → 12 11 3 4 15 10 1 56

Unsupervised Models

Glove (Pennington et al., 2014) 57.3 27.7 70.9 43.3 21.6 61.9 28.9 42.0
SimCSE (Gao et al., 2022) 62.5 29.0 70.3 46.5 20.3 74.3 31.2 45.5
nomic-embed-text-v1unsup 71.2 42.5 83.7 55.0 48.0 80.8 30.7 59.9

Supervised Models

SimCSEbert-sup (Gao et al., 2022) 67.3 33.4 73.7 47.5 21.8 79.1 23.3 48.7
Contriever (Izacard et al., 2022a) 66.7 41.1 82.5 53.1 41.9 76.5 30.4 56.0
GTRxxl (Ni et al., 2021a) 67.4 42.4 86.1 56.7 48.5 78.4 30.6 59.0
Sentence-T5xxl (Ni et al., 2021b) 73.4 43.7 85.1 56.4 42.2 82.6 30.1 59.5
E5large-v2 (Wang et al., 2022) 75.2 44.5 86.0 56.6 50.6 82.1 30.2 62.3
E5mistral (Wang et al., 2023b) 78.5 50.3 88.3 60.2 56.9 84.6 31.4 66.6
GTEbase (Li et al., 2023) 73.0 46.2 84.6 58.6 51.1 82.3 31.2 62.4
GTElarge (Li et al., 2023) 73.3 46.8 85.0 59.1 52.2 83.4 31.7 63.1
BGEbase (Xiao et al., 2023) 75.5 45.8 86.6 58.9 53.3 82.4 31.1 63.6
BGElarge (Xiao et al., 2023) 76.0 46.1 87.1 60.0 54.3 83.1 31.6 64.2
Jinav2 (Günther et al., 2024) 73.5 41.7 85.4 57.0 47.9 80.7 31.6 60.4
text-embedding-ada-002 70.9 45.9 84.9 56.3 49.3 81.0 30.8 61.0
text-embedding-3-small 73.2 46.7 85.0 56.7 51.1 81.6 31.1 62.3
text-embedding-3-large 75.5 49.0 85.7 59.2 55.4 81.7 29.9 64.6
nomic-embed-text-v1-ablated 73.6 43.7 84.6 53.3 51.4 80.2 31.3 61.4
nomic-embed-text-v1 74.1 43.9 85.2 55.7 52.8 82.1 30.1 62.4

and BigPatent 8 (Sharma et al., 2019). Results are
presented in Table 4. Similar to (Günther et al.,
2024), we report the V-scores and NDCG@10 for
the clustering and retrieval datasets respectively.
Across sequence lengths and tasks, nomic-embed-
text-v1 beats or ties jina-embeddings-v2-base on
all datasets at 8k context length. Additionally,
nomic-embed-text-v1 beats text-embedding-ada-
002 on two of the four datasets. We also report
similar results to (Günther et al., 2024) on Wi-
kiCitiesClustering that sequence length hurts per-
formance, suggesting that longer sequence lengths
are not necessary to perform well on the test.

5.3.2 LoCo Benchmark

The LoCo Benchmark consists of 5 retrieval
datasets, 3 from (Shaham et al., 2022) and 2 from
(Dasigi et al., 2021). The benchmark tests retrieval
across meeting transcripts, national policy reports,

8https://huggingface.co/datasets/
jinaai/big-patent-clustering

TV episode transcripts, and scientific research pa-
pers. We include the QASPER Abstract Articles
dataset for completeness, but would like to high-
light that many models seem to oversaturate the
benchmark and approach 1.0 NDCG@10. Re-
sults are presented in Table 6. nomic-embed-text-
v1 beats jina-embeddings-v2-base-en across se-
quence lengths. nomic-embed-text-v1 beats M2-
Bert at 2048 and is competitive at 8192. At se-
quence length 4096, nomic-embed-text-v1 is com-
petitive with E5 Mistral while being significantly
smaller.

5.4 Few-Shot Evaluation of BEIR

While the BEIR component of MTEB was origi-
nally purposed as a zero-shot benchmark, several
top open-source models, including BGE (Xiao
et al., 2023), GTE (Li et al., 2023), and E5-Mistral
(Wang et al., 2023b) report training on train splits
of BEIR benchmark datasets such as FEVER and
HotpotQA. To understand the impact of this on our

https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/datasets/jinaai/big-patent-clustering
https://huggingface.co/datasets/jinaai/big-patent-clustering


Model Seq NarrativeQA WikiCities SciFact BigPatent Avg

nomic-embed-text-v1 128 20.1 90.0 65.4 18.5 48.5
nomic-embed-text-v1-ablated 128 20.8 86.8 65.2 17.5 47.6
jina-embeddings-base-v2 128 19.6 79.9 62.1 14.4 44.0
text-embedding-ada-002 128 25.4 84.9 68.8 16.6 48.9
text-embedding-3-small 128 29.5 87.5 68.8 15.0 50.2
text-embedding-3-large 128 45.6 87.9 74.8 16.5 56.2

nomic-embed-text-v1 512 23.9 88.7 70.5 25.3 52.1
nomic-embed-text-v1-ablated 512 25.7 81.9 71.5 23.7 50.7
jina-embeddings-base-v2 512 21.3 79.3 66.7 21.9 47.3
text-embedding-ada-002 512 25.5 84.8 72.6 23.0 51.5
text-embedding-3-small 512 32.2 89.0 73.2 23.6 54.5
text-embedding-3-large 512 48.1 89.9 77.6 23.6 59.6

nomic-embed-text-v1 8191 37.8 84.3 70.2 24.5 54.2
nomic-embed-text-v1-ablated 8191 44.0 77.4 69.1 23.6 53.5
jina-embeddings-base-v2 8191 39.4 75.7 69.4 23.1 51.9
text-embedding-ada-002 8191 41.1 84.7 72.7 22.5 55.3
text-embedding-3-small 8191 47.1 89.9 73.3 22.5 58.3
text-embedding-3-large 8191 51.6 86.2 77.7 19.3 58.7

Table 4: Jina Long Context Evaluation Benchmark. Numbers for text-embedding-ada-002 and
jina-embeddings-base-v2 taken from (Günther et al., 2024).

downstream scores, we also train a nomic-embed-
text-v1-ablated model that omits the FEVER, Hot-
potQA, and MEDI datasets. As reported in Ta-
ble 1, this decreases our overall MTEB score by
about one point. To maintain an apples-to-apples
comparison with top open-source models, we opt
to train on the FEVER, HotpotQA, and MEDI
datasets for the released version of nomic-embed-
text-v1. Unfortunately, due to the nature of closed-
source models, we have no indication regarding
whether closed-source models trained on these
datasets.

6 Training Resources

Full training of nomic-embed-text-v1 can be con-
ducted in a single week on one 8xH100 node.
Masked language modeling of nomic-bert-2048
takes roughly 4 days. Contrastive pretraining lasts
3 and a half days. Contrastive fine-tuning takes
one hour. We encourage the reader to initialize
from our nomic-bert-2048 or Unsupervised Con-
strastive checkpoints, released under the same li-
cense as nomic-embed-text-v1.

7 Conclusion

We release the first fully open-source long con-
text text embedding model that surpasses OpenAI
Ada-002 performance on both sort and long con-
text benchmarks. We release the model weights
and training code under a permissible license as
well as the recipe, including data, to reproduce the
model.

7.1 Contributions

Zach Nussbaum lead the project, including the
majority of the implementation, training and data
decisions present in the final version, as well as
making several design decisions at all levels of
the stack. Jack Morris made several design con-
tributions regarding dataset curation and model
architecture. Brandon Duderstadt made several
design contributions across the entire stack and
wrote the base implementation of the data curation
pipeline. Andriy Mulyar set early project direc-
tion, reviewed code implementations, and made
several model design and dataset curation contri-
butions.
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Minervini, Heinrich Küttler, Aleksandra Piktus,
Pontus Stenetorp, and Sebastian Riedel. 2021b. Paq:
65 million probably-asked questions and what you
can do with them.

Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long,
Pengjun Xie, and Meishan Zhang. 2023. To-
wards general text embeddings with multi-stage
contrastive learning.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach.

Kyle Lo, Lucy Lu Wang, Mark Neumann, Rodney Kin-
ney, and Dan S. Weld. 2020. S2orc: The semantic
scholar open research corpus.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization.

Jiawei Han Luyu Gao, Yunyi Zhang and Jamie Callan.
2021. Scaling deep contrastive learning batch size
under memory limited setup. In Proceedings of the
6th Workshop on Representation Learning for NLP.

Paulius Micikevicius, Sharan Narang, Jonah Alben,
Gregory Diamos, Erich Elsen, David Garcia, Boris
Ginsburg, Michael Houston, Oleksii Kuchaiev,
Ganesh Venkatesh, and Hao Wu. 2018. Mixed pre-
cision training.

Niklas Muennighoff. 2022. Sgpt: Gpt sentence embed-
dings for semantic search.

Niklas Muennighoff, Nouamane Tazi, Loı̈c Magne, and
Nils Reimers. 2023. Mteb: Massive text embedding
benchmark.

Arvind Neelakantan, Tao Xu, Raul Puri, Alec Radford,
Jesse Michael Han, Jerry Tworek, Qiming Yuan,
Nikolas Tezak, Jong Wook Kim, Chris Hallacy,
Johannes Heidecke, Pranav Shyam, Boris Power,
Tyna Eloundou Nekoul, Girish Sastry, Gretchen
Krueger, David Schnurr, Felipe Petroski Such,
Kenny Hsu, Madeleine Thompson, Tabarak Khan,
Toki Sherbakov, Joanne Jang, Peter Welinder, and
Lilian Weng. 2022. Text and code embeddings by
contrastive pre-training.

Jianmo Ni, Gustavo Hernandez Abrego, Noah Con-
stant, Ji Ma, Keith Hall, Daniel Cer, and Yinfei
Yang. 2022. Sentence-t5: Scalable sentence en-
coders from pre-trained text-to-text models. In
Findings of the Association for Computational Lin-
guistics: ACL 2022, pages 1864–1874, Dublin, Ire-
land. Association for Computational Linguistics.

Jianmo Ni, Jiacheng Li, and Julian McAuley. 2019.
Justifying recommendations using distantly-labeled
reviews and fine-grained aspects. In Proceedings
of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 188–197, Hong
Kong, China. Association for Computational Lin-
guistics.

Jianmo Ni, Chen Qu, Jing Lu, Zhuyun Dai, Gus-
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Table 5: Pretraining Dataset Distribution

Dataset Datapoints % Dataset

Reddita 64,978,944 0.28
PAQ (Lewis et al., 2021b) 52,953,088 0.23
Amazon Reviews (Ni et al., 2019) 38,682,624 0.16
S2ORC Title Abstract (Lo et al., 2020) 35438592 0.15
WikiAnswers (Fader et al., 2014) 9,912,320 0.04
S2ORC Citation Titles (Lo et al., 2020) 7,585,792 0.03
S2ORC Abstract Citation (Lo et al., 2020) 7,503,872 0.03
S2ORC Abstract Body (Lo et al., 2020) 6,389,760 0.03
Wikipedia Title Body (Foundation) 6,078,464 0.03
Gooaq (Khashabi et al., 2021) 1,245,184 0.01
Codesearch (Husain et al., 2019) 835,584 <.01
AGNews (Zhang et al., 2016) 409,600 <.01
CCNews (Hamborg et al., 2017) 344,064 <.01
NPR b 344,064 <.01
CNN (See et al., 2017) 278,528 <.01
Yahoo Title-Answer c 262,144 <.01
AmazonQA (Gupta et al., 2019) 212,992 <.01
Yahoo Title-Question d 196,608 <.01
Sentence Compression (Filippova and Altun, 2013) 163,840 <.01
YahooQA e 131,072 <.01
ELI5 (Fan et al., 2019) 98,304 <.01
Altlex (Hidey and McKeown, 2016) 98,304 <.01
Wikihow (Koupaee and Wang, 2018) 81,920 <.01
SimpleWiki (Coster and Kauchak, 2011) 81,920 <.01
StackExchange Duplicate Questions f 65,536 <.01
StackExchange Title Body g 65,536 <.01
StackExchange Body Body h 65,536 <.01
Quora Duplicate Questions i 32,768 <.01
SQuAD (Rajpurkar et al., 2016) 16,384 <.01
Total 234,553,344 1

ahttps://huggingface.co/datasets/sentence-transformers/reddit-title-body
bhttps://files.pushshift.io/news/
chttps://www.kaggle.com/soumikrakshit/yahoo-answers-dataset
dhttps://www.kaggle.com/soumikrakshit/yahoo-answers-dataset
ehttps://www.kaggle.com/soumikrakshit/yahoo-answers-dataset
fhttps://data.stackexchange.com/apple/query/fork/1456963
ghttps://data.stackexchange.com/apple/query/fork/1456963
hhttps://data.stackexchange.com/apple/query/fork/1456963
ihttps://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs

https://huggingface.co/datasets/sentence-transformers/reddit-title-body
https://files.pushshift.io/news/
https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset
https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset
https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset
https://data.stackexchange.com/apple/query/fork/1456963
https://data.stackexchange.com/apple/query/fork/1456963
https://data.stackexchange.com/apple/query/fork/1456963
https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs


Model Seq Param. Tau
Scr.

Tau
Gov.

Tau
QMS.

QASP.
Tit.
Art.

QASP.
Abs.
Art.

Avg

Unsupervised Models

Jinabase-v2 (Günther et al., 2024) 2048 137M 87.2 97.7 35.1 95.3 99.7 83.0
Jinabase-v2 (Günther et al., 2023) 8192 137M 93.3 98.6 40.8 95.1 99.3 85.5
nomic-embed-text-v1-ablated 2048 137M 83.1 97.3 49.4 97.4 99.9 85.4
nomic-embed-text-v1-ablated 4096 137M 89.1 97.6 49.6 97.5 99.9 86.7
nomic-embed-text-v1-ablated 8192 137M 92.5 97.8 47.6 96.5 99.9 86.9
nomic-embed-text-v1 2048 137M 86.1 96.9 47.8 96.1 99.7 85.3
nomic-embed-text-v1 4096 137M 89.0 97.4 45.7 95.8 99.9 85.6
nomic-embed-text-v1 8192 137M 90.9 97.8 44.2 94.9 99.9 85.5
text-embedding-ada-002 8192 N/A 37.3 44.3 7.30 85.1 89.7 52.7
text-embedding-3-small 8192 N/A 92.2 97.7 27.4 95.9 98.9 82.4
text-embedding-3-large 8192 N/A 88.0 93.6 25.5 93.2 96.8 79.4

E5mistral (Wang et al., 2023b) 4096 7B 95.9 98.3 46.8 98.4 99.8 87.8

Supervised Models

M2-Bert (Saad-Falcon et al., 2024) 2048 80M 81.8 94.7 58.5 87.3 95.5 83.6
M2-Bert (Saad-Falcon et al., 2024) 8192 80M 94.7 96.5 64.1 86.8 97.5 87.9

Table 6: Results on the LoCo benchmark (Saad-Falcon et al., 2024). NCDG@10 is reported for each dataset.
We split evaluations into parameter class and whether the evaluation is performed in a supervised or unsupervised
setting. We bold the top-performing model in each split. Nomic-embed-text-v1 is the best-performing 100M
parameter class unsupervised model. Nomic-embed-text-v1 is competitive with the top-performing models in both
the 7B parameter class and with models trained in a supervised setting specifically for the LoCo benchmark.


